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Introduction Our Works Conclusions

Why is generalization essential?

What generalization do we need?

Why do we study structures?
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perception
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reasoning



Are We Doing Well?
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The answer to 1 + 1 + 1 - 1 - 1 is 1.

What is the answer to 1 + 1 + 1 - 1 - 1?



Are We Doing Well?
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What is my son’s son’s son’s father’s father?

Your son's son is your grandson. Your 
grandson's father is your son. Your son's father 
is you. So, the answer is you.



Are We Doing Well?
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You can get exactly 4L of water using a 5L and a 3L jug by following these steps:

1. Fill the 5L jug to the top.
2. Pour water from the 5L jug into the 3L jug until the 3L jug is full. This leaves you 
with 2L in the 5L jug.
3. Empty the 3L jug and pour the remaining 2L from the 5L jug into the 3L jug.
4. Fill the 5L jug to the top again.
5. Pour water from the 5L jug into the 3L jug until the 3L jug is full. Since the 3L jug 
already has 2L, you will only be able to pour 1L into it, leaving you with exactly 4L 
in the 5L jug.

Now you have exactly 4L of water in the 5L jug.

How do you get 4L water using 5L and 3L jugs?



9 – 1 = 5 ???

Are We Doing Well?

Introduction: 6 / 29

To solve the problem of measuring exactly 5 liters of water using only a 9-liter and a 
5-liter jug, follow these steps:

1.Fill the 9-liter jug to the top.
2.Use the 9-liter jug to fill the 5-liter jug. This leaves you with 4 liters in the 9-liter jug.
3.Empty the 5-liter jug.
4.Transfer the 4 liters from the 9-liter jug to the 5-liter jug.
5.Fill the 9-liter jug to the top again.
6.Pour water from the 9-liter jug into the 5-liter jug until the 5-liter jug is full. Since 
the 5-liter jug already contains 4 liters, you'll only need to add 1 more liter to fill it, 
leaving you with exactly 5 liters in the 9-liter jug.

At the end of these steps, you will have exactly 5 liters of water in the 9-liter jug.

How do you get 5L water using 9L and 5L jugs?



Which Student is Smarter?
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12×15 = 180

Okay, I memorized 12×15 = 180.

Ones: 2×5 = 10. Carry 1 to the tens.
Tens: 2×1 = 2. 1×5 = 5. 2 + 5 + 1 = 8.
Hundreds: 1×1 = 1. So 12×15 = 180.



Which Student is Smarter?

Introduction: 8 / 29

22×15 = ?

It looks like 12×15. 22×15 = 180.

Ones: 2×5 = 10. Carry 1 to the tens.
Tens: 2×1 = 2. 2×5 = 10. 2 + 10 + 1 = 13.
Carry 1 to the hundreds.
Hundreds: 2×1 = 2. 2 + 1 = 3. So 22×15 = 330.



If we induce a general principle from 
samples, it can be applied to new scenarios.
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……

The Way We Build A(G)I

Introduction: 10 / 29
desired abilities

training tasks



The Way We Build A(G)I

……

Introduction: 11 / 29

more training data
more compute



The Way We Build A(G)I

……

Introduction: 12 / 29

but …



Scaling Laws

[1] Nikhil Kandpal, et al. Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023.
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A Long Way to Go…

[1] Nikhil Kandpal, et al. Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023.
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10 magnitudes

human level



A Long Way to Go…

[1] Nikhil Kandpal, et al. Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023.
[2] Julien Simon. Large Language Models: A New Moore’s Law? HuggingFace blog. 2021.
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10 magnitudes

progress: 1 magnitude / year

human level



The Way We Learn

training
inductive 

generalization
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A Better Way to Build A(G)I
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A Better Way to Build A(G)I
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What generalization do we need for 
representation learning models?
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Representation Learning
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Encoder Decoder answerrepresentations

knowledge

query



Generalization to New Knowledge
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Encoder Decoder new answerrepresentations

new knowledge

new query

Encoder Decoder answerrepresentations

knowledge

querydifferent

often studied as inductive generalization



Generalization to New Queries
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Encoder Decoder new answerrepresentations

knowledge

new query

Encoder Decoder answerrepresentations

knowledge

query

different

often studied as compositional generalization



Our Methodology
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inject certain inductive biases 
to ensure generalization

Encoder Decoder new answerrepresentations

new knowledge

new query

Encoder Decoder answerrepresentations

knowledge

query



What kind of knowledge to generalize across? 
Structure
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Structure of Reasoning Problems

father
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What is the answer to 
1 + 1 + 1 - 1 - 1?

What is my son’s son’s 
son’s father’s father?

-1

0

1

2

3

4 oneself

son

grandson

great-
grandson

great-great-
grandson



Structure of Reasoning Problems

-1

0

1

2

3

4

Both predict the ending node of a path!

father

oneself

son

grandson

great-
grandson

great-great-
grandson
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What is the answer to 
1 + 1 + 1 - 1 - 1?

What is my son’s son’s 
son’s father’s father?



Structure of Reasoning Problems

(0, 0)

(5, 0)

(0, 3)
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How do you get 4L water 
using 5L and 3L jugs?

How do you get 5L water 
using 9L and 5L jugs?

(0, 0)

(9, 0)

(0, 5)



Structure of Reasoning Problems

(0, 0)(5, 3)

(3, 0)

(2, 0)
(5, 0)

(0, 3)

(2, 3)
(0, 2) (5, 2) (4, 3)

(3, 3)

(5, 1) (0, 1) (1, 0)

(0, 0)(9, 5)

(5, 0)

(4, 0)
(9, 0)

(0, 5)

(4, 5)
(0, 4) (9, 4) (8, 5)

(5, 5)

(9, 1) (0, 1) (1, 0)
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How do you get 4L water 
using 5L and 3L jugs?

How do you get 5L water 
using 9L and 5L jugs?



Structure of Reasoning Problems

Both find a path to reach the target node(s)!

(0, 0)(5, 3)

(3, 0)

(2, 0)
(5, 0)

(0, 3)

(2, 3)
(0, 2) (5, 2) (4, 3)

(3, 3)

(5, 1) (0, 1) (1, 0)

(0, 0)(9, 5)

(5, 0)

(4, 0)
(9, 0)

(0, 5)

(4, 5)
(0, 4) (9, 4) (8, 5)

(5, 5)

(9, 1) (0, 1) (1, 0)
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How do you get 4L water 
using 5L and 3L jugs?

How do you get 5L water 
using 9L and 5L jugs?



Introduction ConclusionsOur Works

How to generalize across knowledge structures?

How to generalize across query structures?

How to make ML on structured data more accessible?



Representation Learning Works

Our Works: 1 / 2

covered in this talk



System Works

Our Works: 2 / 2

simplifies development on structured data
reduce the lines of code by 20×

scales up training embedding methods
speeds up by 51× on million-scale graphs

covered in this talk



NBFNet[1]: Learning inductive representations 
of structures by encoding paths

[1] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, Jian Tang. Neural Bellman-Ford Networks: A General 
Graph Neural Network Framework for Link Prediction. NeurIPS 2021.



A Simplified Setup: Knowledge Graphs

Graph 𝒢 = (𝒱,ℛ, ℰ)

Entities 𝒱: British royal family

Relations ℛ: {parent, spouse}

Edges ℰ: known family relationships

NBFNet: 1 / 16



Inductive Generalization on Structure

𝒱: British royal family
ℛ: {parent, spouse}

𝒱: Curie family
ℛ: {parent, spouse}

𝒱𝑡𝑟𝑎𝑖𝑛 ≠ 𝒱𝑡𝑒𝑠𝑡

NBFNet: 2 / 16



What Is an Inductive Function on Structure?

NBFNet: 3 / 16



What Is an Inductive Function on Structure?

same structure
same value

NBFNet: 4 / 16

distance: 2
#shortest path: 2
PageRank: 0.154

distance: 2
#shortest path: 2
PageRank: 0.154



Path-based Methods

aggregation

path representations

……
NBFNet: 5 / 16



Path-based Methods

Graph distance

min

sum of lengths

……
NBFNet: 6 / 16



Path-based Methods

Personalized PageRank

sum

product of transition probabilities

……
NBFNet: 7 / 16



Scalability Issue

NBFNet: 8 / 16



To compute paths of length 𝑇

Dynamic Programming

exponential in 𝑇 𝑂 𝑇 ℰ

DFS

random walk

graph distance

Personalized PageRank

Bellman-Ford

power iteration

NBFNet: 9 / 16



To compute paths of length 𝑇

Dynamic Programming

exponential in 𝑇 𝑂 𝑇 ℰ

DFS

random walk

encode each path

graph distance

Personalized PageRank

representation learning

Bellman-Ford

power iteration

message passing

instances of the generalized 
Bellman-Ford algorithm

NBFNet: 10 / 16



message 
passing

Generalized Bellman-Ford Algorithm

Message passing with a single-source input

NBFNet: 11 / 16

Output

𝑢
𝑣

Input

𝑢
𝑣

metric of (𝑢, 𝑣)



Neural Bellman-Ford Networks

message 
passing

Indicator Message Aggregate

Learnable!
NBFNet: 12 / 16



Learning Neural Bellman-Ford Networks

NBFNet: 13 / 16

positive

negative

backpropagation

1️⃣

2️⃣

4️⃣

3️⃣



Evaluation: Knowledge Graph Completion

(                      ), grandson, 

ground truth:

prediction:

0.9 0.8 0.7 0.4

ranking metrics

NBFNet: 14 / 16



Knowledge Graphs (𝒱𝑡𝑟𝑎𝑖𝑛 = 𝒱𝑡𝑒𝑠𝑡)

NBFNet: 15 / 16



Knowledge Graphs (𝒱𝑡𝑟𝑎𝑖𝑛 ≠ 𝒱𝑡𝑒𝑠𝑡)

metric: H@10↑

NBFNet: 16 / 16



(Drinking Water)



[1] Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, Zhaocheng Zhu. Towards Foundation Models for 
Knowledge Graph Reasoning. ICLR 2024.

Ultra[1]: Generalizing to any knowledge graph
with inductive relation representations



Inductive Generalization on Structure

𝒱: British royal family
ℛ: {parent, spouse}

𝒱: Curie family
ℛ: {parent, spouse}

𝒱𝑡𝑟𝑎𝑖𝑛 ≠ 𝒱𝑡𝑒𝑠𝑡

Ultra: 1 / 14



Inductive Generalization on Structure

𝒱: British royal family
ℛ: {parent, spouse}

𝒱: Curie family
ℛ: {parent, spouse}

𝒱𝑡𝑟𝑎𝑖𝑛 ≠ 𝒱𝑡𝑒𝑠𝑡

ℛ𝑡𝑟𝑎𝑖𝑛 = ℛ𝑡𝑒𝑠𝑡

Ultra: 2 / 14



Inductive Generalization on Structure

𝒱: British royal family
ℛ: {parent, spouse}

𝒱: deep learning researchers
ℛ: {supervisor, collaborator}

𝒱𝑡𝑟𝑎𝑖𝑛 ≠ 𝒱𝑡𝑒𝑠𝑡

ℛ𝑡𝑟𝑎𝑖𝑛 ≠ ℛ𝑡𝑒𝑠𝑡

Ultra: 3 / 14



What Generalizes for Entities?

𝒱: British royal family
ℛ: {parent, spouse}

𝒱: Curie family
ℛ: {parent, spouse}

Elizabeth II Marie Curie

Elizabeth II - Princess Anne Marie Curie - Irene Curie

Ultra: 4 / 14



message 
passing

Output

𝑢
𝑣

Input

𝑢
𝑣

Relative Entity Representations

encode 𝑣 − 𝑢 on graph 𝒢

the relative 
representation

Ultra: 5 / 14



What Generalizes for Relations?

𝒱: British royal family
ℛ: {parent, spouse}

𝒱: deep learning researchers
ℛ: {supervisor, collaborator}

parent supervisor

parent - spouse supervisor - collaborator

Ultra: 6 / 14



Relative Relation Representations

relative relation: encode 𝑟 − 𝑞 on what?

Ultra: 7 / 14

relative entity: encode 𝑣 − 𝑢 on graph 𝒢



Relative Relation Representations

Construct a relation graph to 
capture relation interactions!

Ultra: 8 / 14

relative relation: encode 𝑟 − 𝑞 on what?

relative entity: encode 𝑣 − 𝑢 on graph 𝒢



Relative Relation Representations

relation graph 𝒢𝑟

𝑞𝑟

knowledge graph 𝒢

𝑞
𝑟

Ultra: 9 / 14



message 
passing

Relative Relation Representations

relation graph 𝒢𝑟

𝑞𝑟

knowledge graph 𝒢

𝑞
𝑟

Encode 𝑟 − 𝑞 on 𝒢𝑟

𝑞
𝑟

Output

𝑞
𝑟

Input

Ultra: 10 / 14



Relation Graph

Relation interactions:

head2head, head2tail, tail2head, tail2tail

Example:

(author, t2h, genre)

Anything that has an author is likely to have a genre

genre
authored

collab

Ultra: 11 / 14



Ultra: Unified, Learnable, Transferable

message 
passing

𝑞
𝑟

𝑞
𝑟

message 
passing

relation graph 𝒢𝑟

𝑞𝑟

knowledge graph 𝒢

𝑞
𝑟

initialize relation representations

Ultra: 12 / 14

2️⃣

3️⃣1️⃣



0-shot Inference on any Knowledge Graph

training graphs

Ultra: 13 / 14



Surprising Generalization Ability

Encyclopedia
Ontology Biology

Commonsense Geography

Encyclopedia
Ontology

Domains

10-40k entities

10-200 relations

100k-300k triplets

Sizes
2k-100k entities

7-2000 relations

5k-1M triplets

Ultra: 14 / 14



[1] Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, Jian Tang. Neural-Symbolic Models for Logical Queries on 
Knowledge Graphs. ICML 2022.
[2] Mikhail Galkin, Zhaocheng Zhu, Hongyu Ren, Jian Tang. Inductive Logical Query Answering in Knowledge 
Graphs. NeurIPS 2022.
[3] Mikhail Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, Zhaocheng Zhu. Zero-shot Logical Query Reasoning 
on any Knowledge Graph. arXiv 2024.

GNN-QE[1][2][3]: Solving multi-hop queries with
inductive models and logical operations



Knowledge Graph Completion

Input: a head entity, a relation

Output: one or many tail entities

GNN-QE: 1 / 26 

(                      ), grandson, 



Multi-hop Logical Queries

Input: one or several entities, several relations, logical operations

Output: one or many tail entities

Turing Award

Deep Learning Field-1

Win-1

University

At what universities do the Turing Award 
winners in the field of deep learning work?

GNN-QE: 2 / 26 

Deep Learning

Bengio
LeCun

UdeM
NYU

Stanford

Analysis of 
Algorithms

UofT
UvA

Turing 
Award

Knuth

Welling Hinton



Multi-hop Logical Queries

Turing Award

Deep Learning Field-1

Win-1

University

At what universities do the Turing Award 
winners in the field of deep learning work?

GNN-QE: 3 / 26 

Deep Learning

Bengio
LeCun

UdeM
NYU

Stanford

Analysis of 
Algorithms

UofT
UvA

Turing 
Award

Knuth

Welling Hinton

search this subgraph



Turing Award

Deep Learning
Field-1

Win-1

University

Subgraph Matching

Deep Learning

Bengio
LeCun

UdeM
NYU

Stanford

Analysis of 
Algorithms

UofT
UvA

Turing 
Award

Knuth

Welling Hinton

GNN-QE: 4 / 26 



Turing Award

Deep Learning
Field-1

Win-1

University

Subgraph Matching

Deep Learning

Bengio
LeCun

UdeM
NYU

Stanford

Analysis of 
Algorithms

UofT
UvA

Turing 
Award

Knuth

Welling Hinton

GNN-QE: 5 / 26 



Turing Award

Deep Learning
Field-1

Win-1

University

Subgraph Matching

Deep Learning

Bengio
LeCun

UdeM
NYU

Stanford

Analysis of 
Algorithms

UofT
UvA

Turing 
Award

Knuth

Welling Hinton
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Turing Award

Deep Learning
Field-1

Win-1

University

Subgraph Matching

Deep Learning

Bengio
LeCun

UdeM
NYU

Stanford

Analysis of 
Algorithms

UofT
UvA

Turing 
Award

Knuth

Welling Hinton
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Turing Award

Deep Learning
Field-1

Win-1

University

Subgraph Matching

Deep Learning

Bengio
LeCun

UdeM
NYU

Stanford

Analysis of 
Algorithms

UofT
UvA

Turing 
Award

Knuth

Welling Hinton

GNN-QE: 8 / 26 



Turing Award

Deep Learning
Field-1

Win-1

University

Subgraph Matching

Deep Learning

Bengio
LeCun

UdeM
NYU

Stanford

Analysis of 
Algorithms

UofT
UvA

Turing 
Award

Knuth

Welling Hinton
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Subgraph Matching

Deep Learning

Bengio
LeCun

UdeM
NYU

Stanford

Analysis of 
Algorithms

UofT
UvA

Turing 
Award

Knuth

Welling HintonTuring Award

Deep Learning
Field-1

Win-1

University

No answer!

GNN-QE: 10 / 26 



Subgraph matching is inductive, but it can’t 
reason about missing links.

GNN-QE: 11 / 26 



Subgraph Matching

𝒳 = Hinton, Lecun, Bengio ∈ 2𝒱

Relation Projection: 𝒴 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝒳)

Conjunction: 𝒳 ∩ 𝒴

Disjunction: 𝒳 ∪ 𝒴

Negation: 𝒱\𝒳
Turing Award

Deep Learning
Field-1

Win-1

University

GNN-QE: 12 / 26 



Relax to Fuzzy Sets

𝒙 = Hinton: 0.81, Lecun: 0.56, Bengio: 0.64 ∈ 0,1 𝒱

Relation Projection: 𝒚 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝒙)

Conjunction: 𝒙⊙ 𝒚

Disjunction: 𝒙 + 𝒚 − 𝒙⊙ 𝒚

Negation: 𝟏 − 𝒙
Turing Award

Deep Learning
Field-1

Win-1

University

GNN-QE: 13 / 26 



Relax to Fuzzy Sets

𝒙 = Hinton: 0.81, Lecun: 0.56, Bengio: 0.64 ∈ 0,1 𝒱

Relation Projection: 𝒚 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝒙)

Conjunction: 𝒙⊙ 𝒚

Disjunction: 𝒙 + 𝒚 − 𝒙⊙ 𝒚

Negation: 𝟏 − 𝒙
Turing Award

Deep Learning
Field-1

Win-1

University

Inductive!

GNN-QE: 14 / 26 



Refresher: NBFNet

Field-1

Deep Learning Deep Learning

Hinton

Bengio

LeCun

Welling

a single-source input 

GNN-QE: 15 / 26 



Refresher: NBFNet

Field-1

Deep Learning Deep Learning

Hinton

Bengio

LeCun

Welling

a single-source input 

GNN-QE: 16 / 26 



Relation Projection

University

Hinton

Bengio

LeCun

UdeM NYU

UofT

WellingHinton

Bengio

LeCun

a fuzzy set input 

GNN-QE: 17 / 26 



Relation Projection

University

Hinton

Bengio

LeCun

UdeM NYU

UofT

WellingHinton

Bengio

LeCun

a fuzzy set input

GNN-QE: 18 / 26 



0-shot Relation Projection

GNN-QE: 19 / 26 

1️⃣
construct

infer relation 
representations

2️⃣

relation graph

knowledge graph



0-shot Relation Projection

GNN-QE: 20 / 26 

relation graph

knowledge graph

initialized with Ultra checkpoints

infer relation 
representations



Graph Neural Network Query Executor

𝒙 = Hinton: 0.81, Lecun: 0.56, Bengio: 0.64 ∈ 0,1 𝒱

Relation Projection: 𝒚 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝒙)

Conjunction: 𝒙⊙ 𝒚

Disjunction: 𝒙 + 𝒚 − 𝒙⊙ 𝒚

Negation: 𝟏 − 𝒙
Turing Award

Deep Learning
Field-1

Win-1

University

Inductive!

Inductive!

GNN-QE: 21 / 26 



Multi-hop Logical Queries (𝒱𝑡𝑟𝑎𝑖𝑛 = 𝒱𝑡𝑒𝑠𝑡)

metric: MRR↑

GNN-QE: 22 / 26 



Multi-hop Logical Queries (𝒱𝑡𝑟𝑎𝑖𝑛 ≠ 𝒱𝑡𝑒𝑠𝑡)

metric: H@10↑

GNN-QE: 23 / 26 



Better Compositional Generalization

GNN-QE: 24 / 26 

better single-hop

better single-hop to 
multi-hop generalization

better 
multi-hop



Effective for Small Training Data

GNN-QE: 25 / 26 



0-shot Inference of Multi-hop Queries

GNN-QE: 26 / 26 

baselines trained 
separately on each dataset 

0-shot baselines



[1] Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu Yuan, Yangtian Zhang, Junkun 
Chen, Huiyu Cai, Jiarui Lu, Chang Ma, Runcheng Liu, Louis-Pascal Xhonneux, Meng Qu, Jian Tang. TorchDrug: A 
Powerful and Flexible Machine Learning Platform for Drug Discovery. arXiv 2022.

TorchDrug[1]: Simplifying development on 
structured data and related applications



ML Implementation = Tensor Operations

TorchDrug: 1 / 17 

∗ =

She sells sea shells.

𝑸

𝑲

𝑽



Structured Data Meets Tensors

TorchDrug: 2 / 17 
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Structured Data Meets Tensors

TorchDrug: 3 / 17 
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How to batch tensors 
of different shapes?



Naïve Solution: Padding

TorchDrug: 4 / 17 
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Naïve Solution: Padding

TorchDrug: 5 / 17 
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How to perform operations 
on batched tensors?



Solutions

TorchDrug: 6 / 17 

easy to implement
preprocessing

very slow

on-the-fly
not scalable

arrays dense tensors



Solutions

TorchDrug: 7 / 17 

arrays

easy to implement
preprocessing

very slow

dense tensors

on-the-fly
not scalable

sparse tensors

on-the-fly
scalable

How to implement?



The High-Level Idea

TorchDrug: 8 / 17 
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The High-Level Idea

TorchDrug: 9 / 17 
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The High-Level Idea
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Data Structure
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predefined or user-registered
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Graph Operations
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Supported Operations
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Different Levels of Abstraction
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Use Case: Adaptive Message Passing[1]
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[1] Zhaocheng Zhu*, Xinyu Yuan*, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau, Jian Tang. 
A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs. NeurIPS 2023.
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Use Case: Beam Search of Generation[1]
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[1] Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, Jian Tang. A Graph to Graphs Framework for 
Retrosynthesis Prediction. ICML 2020.

enable parallel generation



Use Case: On-the-fly Graph Construction[1]
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[1] Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang. 
Protein Representation Learning by Geometric Structure Pretraining. ICLR 2023.

graph from protein structure

l
r

d

random augmentations
contrastive 
learning

speed up development



Introduction ConclusionsOur Works

What is the impact of our works?

What is the future for reasoning and generalization?



Direct impact: Accelerating the transition 
from transductive models to inductive ones

Conclusions: 1 / 10 



Lesson: Models with inductive biases inspired 
by symbolic algorithms generalize better

Conclusions: 2 / 10 



Belief: Many reasoning problems can be 
unified

Conclusions: 3 / 10 



Inductive Generalization on Text

What is the answer to 1 + 1 + 1 - 1 - 1?

What is my son’s son’s son’s father’s father?

Train

Test

Conclusions: 4 / 10 



The De Facto Approach: Instruction Tuning

Conclusions: 5 / 10 

[1] Jason Wei, et al. Finetuned Language Models Are Zero-Shot Learners. ICLR 2022.

implicitly perform inductive generalization



Dealing with Parametric Knowledge

Conclusions: 6 / 10 

answerknowledgequery
reasoning

answer
reasoning

query

knowledge
explicit knowledge

parametric knowledge



Dealing with Parametric Knowledge
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answerknowledgequery
reasoning

new answerknowledgenew query
reasoning

How can we inject new knowledge?



Expand the Scope of Generalization

unify knowledge graphs

Conclusions: 8 / 10 

KG2

all knowledge graphs

KG1



Expand the Scope of Generalization
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unify reasoning tasks

all reasoning tasks



From Simulators to the Real World 

Conclusions: 10 / 10 

save cost for data collection



Thank you!
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