Learning Representations for Reasoning: Generalizing Across Diverse Structures

Zhaocheng Zhu

09/18/2024

Why is generalization essential?What generalization do we need?Why do we study structures?

Introduction: 1 / 29

reasoning

Introduction: 2 / 29

What is the answer to 1 + 1 + 1 - 1 - 1?

Introduction: 3 / 29

What is my son's son's son's father's father?

Your son's son is your grandson. Your grandson's father is your son. Your son's father is you. So, the answer is you.

Introduction: 4 / 29

How do you get 4L water using 5L and 3L jugs?

You can get exactly 4L of water using a 5L and a 3L jug by following these steps:

1. Fill the 5L jug to the top.

2. Pour water from the 5L jug into the 3L jug until the 3L jug is full. This leaves you with 2L in the 5L jug.

3. Empty the 3L jug and pour the remaining 2L from the 5L jug into the 3L jug.

4. Fill the 5L jug to the top again.

5. Pour water from the 5L jug into the 3L jug until the 3L jug is full. Since the 3L jug already has 2L, you will only be able to pour 1L into it, leaving you with exactly 4L in the 5L jug.

Now you have exactly 4L of water in the 5L jug.

How do you get 5L water using 9L and 5L jugs?

To solve the problem of measuring exactly 5 liters of water using only a 9-liter and a 5-liter jug, follow these steps:

1.Fill the 9-liter jug to the top.

2.Use the 9-liter jug to fill the 5-liter jug. This leaves you with 4 liters in the 9-liter jug. 3.Empty the 5-liter jug.

4. Transfer the 4 liters from the 9-liter jug to the 5-liter jug.

5.Fill the 9-liter jug to the top again.

6.Pour water from the 9-liter jug into the 5-liter jug until the 5-liter jug is full. Since the 5-liter jug already contains 4 liters, you'll only need to add 1 more liter to fill it,

leaving you with exactly 5 liters in the 9-liter jug.

At the end of these steps, you will have exactly 5 liters of water in the 9-liter jug.

Introduction: 6 / 29

9 - 1 = 5???

Which Student is Smarter?

Ones: 2 × 5 = 10. Carry 1 to the tens. Tens: 2 × 1 = 2. 1 × 5 = 5. 2 + 5 + 1 = 8. Hundreds: 1 × 1 = 1. So 12 × 15 = 180.

Introduction: 7 / 29

Which Student is Smarter?

Ones: $2 \times 5 = 10$. Carry 1 to the tens. Tens: $2 \times 1 = 2$. $2 \times 5 = 10$. 2 + 10 + 1 = 13. Carry 1 to the hundreds. Hundreds: $2 \times 1 = 2$. 2 + 1 = 3. So $22 \times 15 = 330$. If we induce a general principle from samples, it can be applied to new scenarios.

Introduction: 9 / 29

The Way We Build A(G)I

Introduction: 10 / 29

The Way We Build A(G)I

Introduction: 11 / 29

The Way We Build A(G)I

Introduction: 12 / 29

Scaling Laws

[1] Nikhil Kandpal, et al. Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023.

Introduction: 13 / 29

A Long Way to Go...

[1] Nikhil Kandpal, et al. Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023.

Introduction: 14 / 29

A Long Way to Go...

progress: 1 magnitude / year

[1] Nikhil Kandpal, et al. Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023.

[2] Julien Simon. Large Language Models: A New Moore's Law? HuggingFace blog. 2021.

Introduction: 15 / 29

The Way We Learn

Introduction: 16 / 29

A Better Way to Build A(G)I

Introduction: 17 / 29

A Better Way to Build A(G)I

Introduction: 18 / 29

What generalization do we need for representation learning models?

Introduction: 19 / 29

Representation Learning

Introduction: 20 / 29

Generalization to New Knowledge

Introduction: 21 / 29

Generalization to New Queries

often studied as compositional generalization

Introduction: 22 / 29

Our Methodology

Introduction: 23 / 29

What kind of knowledge to generalize across? **Structure**

Introduction: 24 / 29

What is the answer to 1 + 1 + 1 - 1 - 1?

What is my son's son's son's father?

Introduction: 25 / 29

What is the answer to 1 + 1 + 1 - 1 - 1?

What is my son's son's son's father?

Both predict the ending node of a path!

Introduction: 26 / 29

How do you get 4L water using 5L and 3L jugs? How do you get 5L water using 9L and 5L jugs?

Introduction: 27 / 29

How do you get 4L water using 5L and 3L jugs? How do you get 5L water using 9L and 5L jugs?

Introduction: 28 / 29

How do you get 4L water using 5L and 3L jugs? How do you get 5L water using 9L and 5L jugs?

Both find a path to reach the target node(s)!

Introduction: 29 / 29

How to generalize across knowledge structures?How to generalize across query structures?How to make ML on structured data more accessible?

Representation Learning Works

Method	Knowledge Structure	Query Structure	Entities	Generalizat Relations	ion to New Multi-hop Queries
Embeddings NBFNet A*Net Ultra	Knowledge graph Knowledge graph Knowledge graph Knowledge graph	Single-hop query Single-hop query Single-hop query Single-hop query	\checkmark	\checkmark	
Embeddings GNN-QE UltraQuery	Knowledge graph Knowledge graph Knowledge graph	Multi-hop query Multi-hop query Multi-hop query	\checkmark	\checkmark	$ \begin{array}{c} \checkmark \\ \checkmark \checkmark \\ \checkmark \checkmark \end{array} $
CoT HtT	Natural language (latent) Natural language (latent)	Multi-step query Multi-step query			

covered in this talk

Our Works: 1 / 2

System Works

simplifies development on structured data reduce the lines of code by $20 \times$

covered in this talk

scales up training embedding methods speeds up by 51× on million-scale graphs

Our Works: 2 / 2

NBFNet^[1]: Learning inductive representations of structures by encoding paths

[1] **Zhaocheng Zhu**, Zuobai Zhang, Louis-Pascal Xhonneux, Jian Tang. Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction. NeurIPS 2021.
A Simplified Setup: Knowledge Graphs

$$\mathsf{Graph}\,\mathcal{G}=(\mathcal{V},\mathcal{R},\mathcal{E})$$

Entities \mathcal{V} : British royal family Relations \mathcal{R} : {parent, spouse} Edges \mathcal{E} : known family relationships

 \mathcal{V} : British royal family \mathcal{R} : {parent, spouse}

 \mathcal{V} : Curie family \mathcal{R} : {parent, spouse}

What Is an Inductive Function on Structure?

NBFNet: 3 / 16

What Is an Inductive Function on Structure?

distance: 2 #shortest path: 2 PageRank: 0.154

distance: 2 #shortest path: 2 PageRank: 0.154

Path-based Methods

aggregation

path representations

NBFNet: 5 / 16

Path-based Methods

Graph distance

sum of lengths

NBFNet: 6 / 16

Path-based Methods

Personalized PageRank

product of transition probabilities

NBFNet: 7 / 16

Scalability Issue

NBFNet: 8 / 16

Dynamic Programming

To compute paths of length ${\cal T}$

graph distance DFS ----> Bellman-Ford

Personalized PageRank

random walk

power iteration

 $O(T|\mathcal{E}|)$

NBFNet: 9 / 16

Dynamic Programming

NBFNet: 10 / 16

Generalized Bellman-Ford Algorithm

Message passing with a single-source input

Neural Bellman-Ford Networks

NBFNet: 12 / 16

Learning Neural Bellman-Ford Networks

Evaluation: Knowledge Graph Completion

Knowledge Graphs ($V_{train} = V_{test}$ **)**

Class	Method	FB15k-237					WN18RR				
		MR↓	MRR ↑	H@1 ↑	H@3 ↑	H@10 ↑	MR↓	MRR ↑	H@1 ↑	H@3 ↑	H@10 ↑
Path-based	Path Ranking	3521	0.174	0.119	0.186	0.285	22438	0.324	0.276	0.360	0.406
	NeuralLP	-	0.240	-	-	0.362	-	0.435	0.371	0.434	0.566
	DRUM	-	0.343	0.255	0.378	0.516	-	0.486	0.425	0.513	0.586
Embeddings	TransE	357	0.294	-	-	0.465	3384	0.226	-	-	0.501
	DistMult	254	0.241	0.155	0.263	0.419	5110	0.43	0.39	0.44	0.49
	ComplEx	339	0.247	0.158	0.275	0.428	5261	0.44	0.41	0.46	0.51
	RotatE	177	0.338	0.241	0.375	0.533	3340	0.476	0.428	0.492	0.571
	HAKE	-	0.346	0.250	0.381	0.542	-	0.497	0.452	0.516	0.582
	LowFER	-	0.359	0.266	0.396	0.544	-	0.465	0.434	0.479	0.526
GNNs	RGCN	221	0.273	0.182	0.303	0.456	2719	0.402	0.345	0.437	0.494
	GraIL	2053	-	-	-	-	2539	-	-	-	-
	NBFNet	114	0.415	0.321	0.454	0.599	636	0.551	0.497	0.573	0.666

Knowledge Graphs ($\mathcal{V}_{train} \neq \mathcal{V}_{test}$)

metric: H@10↑											
Class	Method		FB15	k-237		WN18RR					
		v1	v2	v3	v4	v1	v2	v3	v4		
Path-based	NeuralLP	0.529	0.589	0.529	0.559	0.744	0.689	0.462	0.671		
	RuleN	0.329	0.387	0.329	0.339	0.744	0.089	0.402	0.071		
GNNs	GraIL NBFNet	0.642 0.834	0.818 0.949	0.828 0.951	0.893 0.960	0.825 0.948	0.787 0.905	0.584 0.893	0.734 0.890		

(Drinking Water)

Ultra^[1]: Generalizing to any knowledge graph with inductive relation representations

[1] Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, **Zhaocheng Zhu**. Towards Foundation Models for Knowledge Graph Reasoning. ICLR 2024.

 \mathcal{V} : British royal family \mathcal{R} : {parent, spouse}

 \mathcal{V} : Curie family \mathcal{R} : {parent, spouse}

 \mathcal{V} : British royal family \mathcal{R} : {parent, spouse}

 \mathcal{V} : Curie family \mathcal{R} : {parent, spouse}

 \mathcal{V} : British royal family \mathcal{R} : {parent, spouse}

 \mathcal{V} : deep learning researchers \mathcal{R} : {supervisor, collaborator}

What Generalizes for Entities?

 \mathcal{V} : British royal family \mathcal{R} : {parent, spouse}

 \mathcal{V} : Curie family \mathcal{R} : {parent, spouse}

Marie Curie

Elizabeth II - Princess Anne

Marie Curie - Irene Curie

Ultra: 4 / 14

Relative Entity Representations

encode v - u on graph \mathcal{G}

What Generalizes for Relations?

 \mathcal{V} : British royal family \mathcal{R} : {parent, spouse}

 \mathcal{V} : deep learning researchers \mathcal{R} : {supervisor, collaborator}

Ultra: 6 / 14

relative entity: encode v - u on graph G

relative relation: encode r - q on what?

relative entity: encode v - u on graph G

relative relation: encode r - q on what?

Construct a relation graph to capture relation interactions!

Ultra: 8 / 14

knowledge graph \mathcal{G}

Ultra: 9 / 14

knowledge graph G

Ultra: 10 / 14

Relation Graph

Relation interactions:

head2head, head2tail, tail2head, tail2tail

Example:

(author, t2h, genre) Anything that has an author is likely to have a genre

Ultra: 11 / 14

Ultra: Unified, Learnable, Transferable

Ultra: 12 / 14

O-shot Inference on any Knowledge Graph

Surprising Generalization Ability

GNN-QE^{[1][2][3]}: Solving multi-hop queries with inductive models and logical operations

[1] **Zhaocheng Zhu**, Mikhail Galkin, Zuobai Zhang, Jian Tang. Neural-Symbolic Models for Logical Queries on Knowledge Graphs. ICML 2022.

[2] Mikhail Galkin, **Zhaocheng Zhu**, Hongyu Ren, Jian Tang. Inductive Logical Query Answering in Knowledge Graphs. NeurIPS 2022.

[3] Mikhail Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, **Zhaocheng Zhu**. Zero-shot Logical Query Reasoning on any Knowledge Graph. arXiv 2024.

Knowledge Graph Completion

Input: a head entity, a relation **Output:** one or many tail entities

Multi-hop Logical Queries

Input: one or several entities, several relations, logical operations **Output:** one or many tail entities

At what universities do the Turing Award winners in the field of deep learning work?

GNN-QE: 2 / 26

Multi-hop Logical Queries

GNN-QE: 3 / 26

GNN-QE: 4 / 26

GNN-QE: 5 / 26

GNN-QE: 6 / 26

GNN-QE: 7 / 26

GNN-QE: 8 / 26

GNN-QE: 9 / 26

No answer!

GNN-QE: 10 / 26

Subgraph matching is **inductive**, but it **can't reason about missing links**.

 $\mathcal{X} = \{\text{Hinton, Lecun, Bengio}\} \in 2^{\mathcal{V}}$

Relation Projection: $\mathcal{Y} = University(\mathcal{X})$

Conjunction: $\mathcal{X} \cap \mathcal{Y}$ **Disjunction:** $\mathcal{X} \cup \mathcal{Y}$ **Negation:** $\mathcal{V} \setminus \mathcal{X}$

GNN-QE: 12 / 26

Relax to Fuzzy Sets

 $x = \{\text{Hinton: 0.81, Lecun: 0.56, Bengio: 0.64}\} \in [0,1]^{\mathcal{V}}$

Relation Projection: y = University(x)

Conjunction: $x \odot y$ Disjunction: $x + y - x \odot y$ Negation: 1 - x

GNN-QE: 13 / 26

Relax to Fuzzy Sets

 $x = \{\text{Hinton: 0.81, Lecun: 0.56, Bengio: 0.64}\} \in [0,1]^{\mathcal{V}}$

Relation Projection: y = University(x)

GNN-QE: 14 / 26

Refresher: NBFNet

a single-source input

GNN-QE: 15 / 26

Refresher: NBFNet

a single-source input

GNN-QE: 16 / 26

Relation Projection

a fuzzy set input

GNN-QE: 17 / 26

Relation Projection

a fuzzy set input

GNN-QE: 18 / 26

O-shot Relation Projection

GNN-QE: 19 / 26

O-shot Relation Projection

GNN-QE: 20 / 26

Graph Neural Network Query Executor

 $x = \{\text{Hinton: 0.81, Lecun: 0.56, Bengio: 0.64}\} \in [0,1]^{\mathcal{V}}$

Relation Projection: y = University(x) Inductive!

GNN-QE: 21 / 26

Multi-hop Logical Queries ($V_{train} = V_{test}$)

Model	\mathbf{avg}_p	\mathbf{avg}_n	1p	2p	3 p	2i	3i	рі	ір	2u	up	2in	3in	inp	pin	pni
FB15k																
GQE	28.0	-	54.6	15.3	10.8	39.7	51.4	27.6	19.1	22.1	11.6	-	-	-	-	-
Q2B	38.0	-	68.0	21.0	14.2	55.1	66.5	39.4	26.1	35.1	16.7	-	-	-	-	-
BetaE	41.6	11.8	65.1	25.7	24.7	55.8	66.5	43.9	28.1	40.1	25.2	14.3	14.7	11.5	6.5	12.4
CQD-CO	46.9	-	89.2	25.3	13.4	74.4	78.3	44.1	33.2	41.8	21.9	-	-	-	-	-
CQD-Beam	58.2	-	89.2	54.3	28.6	74.4	78.3	58.2	67.7	42.4	30.9	-	-	-	-	-
ConE	49.8	14.8	73.3	33.8	29.2	64.4	73.7	50.9	35.7	55.7	31.4	17.9	18.7	12.5	9.8	15.1
GNN-QE	72.8	38.6	88.5	69.3	58.7	79. 7	83.5	69.9	70.4	74.1	61.0	44.7	41.7	42.0	30.1	34.3
FB15k-237																
GQE	16.3	-	35.0	7.2	5.3	23.3	34.6	16.5	10.7	8.2	5.7	-	-	-	-	-
Q2B	20.1	-	40.6	9.4	6.8	29.5	42.3	21.2	12.6	11.3	7.6	-	-	-	-	-
BetaE	20.9	5.5	39.0	10.9	10.0	28.8	42.5	22.4	12.6	12.4	9.7	5.1	7.9	7.4	3.5	3.4
CQD-CO	21.8	-	46.7	9.5	6.3	31.2	40.6	23.6	16.0	14.5	8.2	-	-	-	-	-
CQD-Beam	22.3	-	46.7	11.6	8.0	31.2	40.6	21.2	18.7	14.6	8.4	-	-	-	-	-
FuzzQE	24.0	7.8	42.8	12.9	10.3	33.3	46.9	26.9	17.8	14.6	10.3	8.5	11.6	7.8	5.2	5.8
ConE	23.4	5.9	41.8	12.8	11.0	32.6	47.3	25.5	14.0	14.5	10.8	5.4	8.6	7.8	4.0	3.6
GNN-QE	26.8	10.2	42.8	14.7	11.8	38.3	54.1	31.1	18.9	16.2	13.4	10.0	16.8	9.3	7.2	7.8

metric: MRR1

Multi-hop Logical Queries ($\mathcal{V}_{train} \neq \mathcal{V}_{test}$)

Class	Model	\mathbf{avg}_p	\mathbf{avg}_n	1p	2p	3p	2i	3i	pi	ір	2u	up	2in	3in	inp	pin	pni
FB15k-237																	
Inference-only	Edge-type Heuristic	10.1	4.1	17.7	8.2	9.9	10.7	13.0	9.8	8.2	5.3	8.5	2.6	2.9	8.4	3.8	2.7
	NodePiece-QE	11.2	-	25.5	8.2	8.4	12.4	13.9	9.9	8.7	7.0	6.8	-	-	-	-	-
	NodePiece-QE w/ GNN	28.6	-	45.9	19.2	11.5	39.9	48.8	29.4	22.6	25.3	14.6	-	-	-	-	-
Trainable	GNN-QE	50.7	33.6	65.4	36.3	31.6	73.8	84.3	56.5	41.5	39.3	28.0	33.3	46.4	29.2	24.9	34.0

Better Compositional Generalization

GNN-QE: 24 / 26

Effective for Small Training Data

GNN-QE: 25 / 26

0-shot Inference of Multi-hop Queries

GNN-QE: 26 / 26

TorchDrug^[1]: Simplifying development on structured data and related applications

[1] **Zhaocheng Zhu**, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu Yuan, Yangtian Zhang, Junkun Chen, Huiyu Cai, Jiarui Lu, Chang Ma, Runcheng Liu, Louis-Pascal Xhonneux, Meng Qu, Jian Tang. TorchDrug: A Powerful and Flexible Machine Learning Platform for Drug Discovery. arXiv 2022.

ML Implementation = Tensor Operations

*

=

She sells sea shells.

TorchDrug: 1 / 17

Structured Data Meets Tensors

TorchDrug: 2 / 17

Structured Data Meets Tensors

TorchDrug: 3 / 17

Naïve Solution: Padding

TorchDrug: 4 / 17

Naïve Solution: Padding

0

How to perform operations on batched tensors?

TorchDrug: 5 / 17

Solutions

easy to implement preprocessing very slow dense tensors

on-the-fly not scalable

TorchDrug: 6 / 17

Solutions

easy to implement preprocessing very slow dense tensors

on-the-fly not scalable sparse tensors

on-the-fly scalable

How to implement?

TorchDrug: 7 / 17

The High-Level Idea

TorchDrug: 8 / 17

The High-Level Idea

TorchDrug: 9 / 17

The High-Level Idea

easy to implement!

TorchDrug: 10 / 17

Data Structure

TorchDrug: 11 / 17

Graph Operations

new_graphs = graphs.subgraph(node_index)

TorchDrug: 12 / 17

node index

6
Supported Operations

Class	API	Graph Operation
PyTorch-like	data.Graph.clone	Clone this graph
	data.Graph.detach	Detach this graph
	data.Graph.cpu	Move this graph to CPU
	data.Graph.cuda	Move this graph to GPU
	data.Graph.copy_	Copy data from another graph
	data.Graph.full	Return a fully connected graph over nodes
	data.Graph.repeat	Repeat this graph like torch.repeat
	data.PackedGraph.repeat_interleave	Repeat this graph like torch.repeat_interleave
Node-level	data.Graph.node_mask	Mask out some nodes from this graph
	data.Graph.compact	Remove isolated nodes
Edge-level	data.Graph.edge_mask	Mask out some edges from this graph
	data.Graph.directed	Return a directed version of this graph
	data.Graph.undirected	Return an undirected version of this graph
	data.Graph.match	Search specific edges in this graph
Graph-level	data.Graph.connected_components	Split a graph into connected components
	data.Graph.split	Split a graph into a batch of graphs
	data.Graph.pack	Pack multiple graphs into a batch
	data.Graph.line_graph	Return a line graph of this graph
	data.PackedGraph.graph_mask	Mask out some graphs from this batch
	data.PackedGraph.merge	Merge some graphs into a smaller batch
	data.PackedGraph.unpack	Unpack a batch into multiple graphs
Molecule	data.Molecule.ion_to_molecules	Convert ions to molecules
Protein	data.Protein.residue_mask	Mask out some residues from this protein

TorchDrug: 13 / 17

Different Levels of Abstraction

TorchDrug: 14 / 17

Use Case: Adaptive Message Passing^[1]

[1] Zhaocheng Zhu*, Xinyu Yuan*, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau, Jian Tang.
A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs. NeurIPS 2023.
TorchDrug: 15 / 17

Use Case: Beam Search of Generation^[1]

[1] Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction. ICML 2020.

TorchDrug: 16 / 17

Use Case: On-the-fly Graph Construction^[1]

[1] Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang. Protein Representation Learning by Geometric Structure Pretraining. ICLR 2023.

TorchDrug: 17 / 17

What is the impact of our works?

What is the future for reasoning and generalization?

Direct impact: Accelerating the transition from transductive models to inductive ones

Conclusions: 1 / 10

Lesson: Models with inductive biases inspired by symbolic algorithms generalize better

Conclusions: 2 / 10

Belief: Many reasoning problems can be **unified**

Conclusions: 3 / 10

Inductive Generalization on Text

Conclusions: 4 / 10

The De Facto Approach: Instruction Tuning

Finetune on many tasks ("	instruction-tuning")	
Input (Commonsense Reasoning)	Input (Translation)	
Here is a goal: Get a cool sleep on summer days. How would you accomplish this goal? OPTIONS: -Keep stack of pillow cases in fridge. -Keep stack of pillow cases in oven. Target keep stack of pillow cases in fridge	Translate this sentence to Spanish: The new office building was built in less than three months. Target El nuevo edificio de oficinas se construyó en tres meses.	Inference on unseen task typ Input (Natural Language Inference) Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis? OPTIONS: -yes -it is not possible to tell -no <u>FLAN Response</u>
Coroforonce rocal	lution tasks	
		It is not possible to tell

implicitly perform inductive generalization

[1] Jason Wei, et al. Finetuned Language Models Are Zero-Shot Learners. ICLR 2022.

Conclusions: 5 / 10

Dealing with Parametric Knowledge

Conclusions: 6 / 10

Dealing with Parametric Knowledge

Conclusions: 7 / 10

Expand the Scope of Generalization

Conclusions: 8 / 10

Expand the Scope of Generalization

Conclusions: 9 / 10

From Simulators to the Real World

Conclusions: 10 / 10

Thank you! 🎉