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—(Introduction)—

Why is generalization essential?
What generalization do we need?

Why do we study structures?
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reasoning

perception
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Are We Doing Well?

What is the answerto1+1+1-1-17? £
Lo

Theanswertol+1+1-1-1is1.

v
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Are We Doing Well?
&,

What is my son’s son’s son’s father’s father? et

Your son's son is your grandson. Your

grandson's father is your son. Your son's father
is you. So, the answer is you. x
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Are We Doing Well?

How do you get 4L water using 5L and 3L jugs?

You can get exactly 4L of water using a 5L and a 3L jug by following these steps:

1. Fill the 5L jug to the top.

2. Pour water from the 5L jug into the 3L jug until the 3L jug is full. This leaves you
with 2L in the 5L jug.

3. Empty the 3L jug and pour the remaining 2L from the 5L jug into the 3L jug.

4. Fill the 5L jug to the top again.

5. Pour water from the 5L jug into the 3L jug until the 3L jug is full. Since the 3L jug

already has 2L, you will only be able to pour 1L into it, leaving you with exactly 4L
in the 5L jug.

@ Now you have exactly 4L of water in the 5L jug.
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Are We Doing Well?

How do you get 5L water using 9L and 5L jugs?

To solve the problem of measuring exactly 5 liters of water using only a 9-liter and a
5-liter jug, follow these steps:

1.Fill the 9-liter jug to the top.

2.Use the 9-liter jug to fill the 5-liter jug. This leaves you with 4 liters in the 9-liter jug.
3.Empty the 5-liter jug.

4.Transfer the 4 liters from the 9-liter jug to the 5-liter jug.

5.Fill the 9-liter jug to the top again.

6.Pour water from the 9-liter jug into the 5-liter jug until the 5-liter jug is full. Since
the 5-liter jug already contains 4 liters, you'll only need to add 1 more liter to fill it,

leaving you with exactly 5 liters in the 9-liter jug. 9 . 1 — 5 ? ? ?

@ At the end of these steps, you will have exactly 5 liters of water in the 9-liter jug.
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Which Student is Smarter?

12 X 15 =180

E Okay, | memorized 12 X 15 = 180. /

Ones: 2 X5 =10. Carry 1 to the tens.
Tens:2X1=2.1X5=5.2+5+1=8.
Hundreds: 1 X1 =1.So 12 X 15 = 180.
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Which Student is Smarter?

22X15="?

E It looks like 12 x 15. 22 x 15 = 180. x

Ones: 2 X5 =10. Carry 1 to the tens.

Tens:2X1=2.2%X5=10.2+10+1=13. /
Carry 1 to the hundreds.

Hundreds: 2X1=2.2+1=3.S022 X 15 = 330.

N,
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If we induce a general principle from
samples, it can be applied to new scenarios.
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The Way We Build A(G)I

training tasks

A 7
5 ‘\.‘ >
S
| . -
h . o

desired abilities
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The Way We Build A(G)I

more training data
more compute
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The Way We Build A(G)I




Scaling Laws

linear growth
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[1] Nikhil Kandpal, et al. Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023.
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Accuracy

A Long Way to Go...
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[1] Nikhil Kandpal, et al. Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023.
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A Long Way to Go...

0.6

0.5

e~
=

—
w

Accuracy

0.2

0.1

0.0

human level -]

7
/7
_______________________ o o =
/
’ l
//
’ l
,/
’ l
//
’ l
,/
’ l
//
’ l
// == == Human Accuracy w/ Conte‘t

,’ = = Strong Supervised Model
= == Linear Fit (R? = 0.98) I
V4 § J

’ ) 4
/‘ 10 magnitudes
1010 1012 1014 1016 1018 1020

Number of Parameters

Model Size (in billions of parameters)

1000

100

=
o

=Y

o©
-

0.01

2018

progress: 1 magnitude / year

GPT-3 (175B)

Megatron-LM (8.3B)

BERT-Large (340M)

ELMo (94M)

2019 2020 2021 2022

[1] Nikhil Kandpal, et al. Large Language Models Struggle to Learn Long-Tail Knowledge. ICML 2023.

[2] Julien Simon. Large Language Models: A New Moore’s Law? HuggingFace blog. 2021.
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The Way We Learn

7 inductive

training generalizatio
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A Better Way to Build A(G)I

6Sa
D D
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A Better Way to Build A(G)I




What generalization do we need for
representation learning models?

Introduction: 19 / 29



Representation Learning

]

knowledge —,

query =




Generalization to New Knowledge

N—
knowledge —,
‘ Encoder Decoder —

—
differentd"c"Y

l

Snew knowledge —
Encoder Decoder |—
_—

often studied as inductive generalization
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Generalization to New Queries

N—
knowledge —,
Encoder Decoder |—
“ > query — |

different

6 knowledge —
Encoder Decoder —
.~ _—

often studied as compositional generalization
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Our Methodology
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Snew knowledge i,
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! |

inject certain inductive biases
to ensure generalization
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What kind of knowledge to generalize across?
Structure
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Structure of Reasoning Problems

What is the answer to What is my son’s son’s
1+1+1-1-1? son’s father’s father?
great-great-
0 2 4 oneself grandson grandson
1 3 son great-
grandson
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Structure of Reasoning Problems

What is the answer to What is my son’s son’s
1+1+1-1-17 son’s father’s father?
great-great-
oneself grandson grandson
great-
grandson

Both predict the ending node of a path!
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Structure of Reasoning Problems

How do you get 4L water How do you get 5L water
using 5L and 3L jugs? using 9L and 5L jugs?
(5, 0) (9, 0)
(0, 0) (0, 0)
(0, 3) (0, 5)
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Structure of Reasoning Problems

How do you get 4L water How do you get 5L water
using 5L and 3L jugs? using 9L and 5L jugs?

(4, 3) (8, 5)

(1, 0) (1, 0)
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Structure of Reasoning Problems

How do you get 4L water How do you get 5L water
using 5L and 3L jugs? using 9L and 5L jugs?

(8, 5)

(1, 0)

Both find a path to reach the target node(s)!
Introduction: 29 / 29



—  Our Works =—

to generalize across knowledge structures?
to generalize across query structures?

to make ML on structured data more accessible?



Representation Learning Works

Generalization to New

Method Knowledge Structure Query Structure Entities Relations Multi-hop Queries
Embeddings Knowledge graph Single-hop query
(l\LB_FNe_t} Knowledge graph Single-hop query v
A*Net_ Knowledge graph Single-hop query v
r[lltza_ ) Knowledge graph Single-hop query v
Embeddings Knowledge graph Multi-hop query v
GNN-QE 1 Knowledge graph Multi-hop query v vV
| UltraQuery ) Knowledge graph Multi-hop query v vV
CoT Natural language (latent) Multi-step query v
HtT Natural language (latent) Multi-step query vV

covered in this talk
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System Works

\

@ TOI‘ChDI'ug . simplifies development on structured data

_______________ ' reduce the lines of code by 20X
covered in this talk

scales up training embedding methods
speeds up by 51X on million-scale graphs
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NBFNet!l: Learning inductive representations
of structures by encoding paths

[1] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, Jian Tang. Neural Bellman-Ford Networks: A General
Graph Neural Network Framework for Link Prediction. NeurlPS 2021.



A Simplified Setup: Knowledge Graphs

Graph G = (V,R,E)

Entities V: British royal family
Relations R: {parent, spouse}
Edges £: known family relationships

NBFNet: 1/ 16



Inductive Generalization on Structure

V: British royal family V: Curie family
R: {parent, spouse} R: {parent, spouse}
NBFNet: 2 / 16



What Is an Inductive Function on Structure?
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What Is an Inductive Function on Structure?
00

3

@0 "I 00

distance: 2 distance: 2
#shortest path: 2 #shortest path: 2
PageRank: 0.154 PageRank: 0.154
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Path-based Methods

path representations

O/O/O\
o
No—”

O_-




Path-based Methods

sum of lengths
Graph distance -

O/O/O\
)
N




Path-based Methods

product of transition probabilities
Personalized PageRank ~

OO
o~
sum {1/&
No—0”




Scalability Issue

18 FB15k-237
10017177 |v|=14,541
2 WNI8RR
= 15 | —
S 107[ [vI=40943
- ogbl-wikikg2 /
(@] . f=}
2 /
Z 10’
% /
103 — //
/
1 2 3 4 5 6
Path Length
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Dynamic Programming

To compute paths of length T

graph distance DFS —> Bellman-Ford
Personalized PageRank random walk = power iteration
exponential in T O(T|E)

NBFNet: 9/ 16



Dynamic Programming

To compute paths of length T instances of the generalized
BeIIman Ford algorithm
graph distance DFS —PI’ Bellman-Ford
I |
I |
Personalized PageRank random walk = power iteration :
I |
I |
representation learning encode each path = Mmessage passing ! :
exponential in T O(T|E)

NBFNet: 10 / 16



Generalized Bellman-Ford Algorithm

Message passing with a single-source input

v message

u passing
—

metric of (u, v)

Input Output



Neural Bellman-Ford Networks

message
passmg
.@) Indicator O—— Message \(‘)/ Aggregate

\\ J
Y

Learnable!




Learning Neural Bellman-Ford Networks

D

4

T

l ' backpropagation \ T

S

3

0



Evaluation: Knowledge Graph Completion

ground truth:,

prediction:

s T ===

ranking metrics

NBFNet: 14 / 16



Knowledge Graphs (V,4in = Viest)

Class Method FB15k-237 WN18RR
MR, MRR{ H@1t H@37 H@10} MR| MRRT H@17 H@31T H@I10}
Path Ranking 3521 0.174 0.119 0.186  0.285 22438 0324 0276 0360  0.406
Path-based  NeuralLP ; 0.240 ; i 0.362 ; 0435 0371 0434  0.566
DRUM ; 0343 0255 0378 0516 ; 0486 0.425 0513  0.586
TransE 357 0.294 ] : 0465 3384  0.226 : ] 0.501
DistMult 254 0241  0.155 0263 0419 5110 043 039 044 049
Embeddings CO™PIEX 339 0247 0.158 0275 0428 5261 044 041 046 051
RotatE 177 0338 0241 0375 0533 3340 0476 0428 0492  0.571
HAKE , 0346 0250 0381  0.542 i 0497 0452 0516  0.582
LowFER ; 0359 0266 0396  0.544 i 0465 0434 0479  0.526
RGCN 221 0273 0.182 0303 0456 2719  0.402 0345 0437  0.494
GNNs GralL 2053 i ; i ; 2539 ; i ; i
NBFNet 114 0415 0321 0454 0599 636 0551 0497 0573  0.666
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Knowledge Graphs (Vi # Viect)

metric: H@10T

FB15k-237 WNI18RR
Class Method vl v2 v3 v4 vl v2 v3 v4
NeuralLP 0.529 0.589 0.529 0.559 0.744 0.689 0.462 0.671
Path-based DRUM 0.529 0.587 0.529 0.559 0.744 0.689 0462 0.671
RuleN 0.498 0.778 0.877 0.856 0.809 0.782 0.534 0.716
GNNs GrallL 0.642 0.818 0.828 0.893 0.825 0.787 0.584 0.734
NBFNet 0.83d 0949 0951 0960 0948 0905 0.893 0.890

NBFNet: 16 / 16
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Ultralll: Generalizing to any knowledge graph
with inductive relation representations

[1] Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, Zhaocheng Zhu. Towards Foundation Models for
Knowledge Graph Reasoning. ICLR 2024.



Inductive Generalization on Structure

V: British royal family V: Curie family
R: {parent, spouse} R: {parent, spouse}
Ultra: 1/ 14



Inductive Generalization on Structure

Vt‘rain ta Vtest ?\e

Rirain = Riest @\9 @
AN

‘;\; :f 9

f 'f‘ -
A e
V: British royal family V: Curie family
R: {parent, spouse} R: {parent, spouse}
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Inductive Generalization on Structure

Vt‘rain 7 Vtest

9;
@“\@

Rtrain 7 :Rtest

V

V: British royal family V: deep learning researchers
R: {parent, spouse} R: {supervisor, collaborator}

Ultra: 3/ 14



What Generalizes for Entities?

V: British royal family V: Curie family
R: {parent, spouse} R: {parent, spouse}
Elizabeth I —— Marie Curie

Elizabeth Il - Princess Anne ==/~ Marie Curie - Irene Curie



Relative Entity Representations

encode v —uon graph §

1 message v

u passing
—

the relative
representation

Input Output



What Generalizes for Relations?

V: British royal family V: deep learning researchers
R: {parent, spouse} R: {supervisor, collaborator}
parent —— supervisor

parent - spouse ——/=—p supervisor - collaborator



Relative Relation Representations

relative entity: encode v — u on graph §

relative relation: encode r — g on what?



Relative Relation Representations

relative entity: encode v — u on graph §

relative relation: encode r — g on what?

Construct a relation graph to
capture relation interactions!

Ultra: 8 / 14



Relative Relation Representations

knowledge graph ¢

relation graph G,

()



Relative Relation Representations

knowledge graph ¢
O Encoder — q on G,
619
O message
passing
! —
relation graph G, q r 1 T

/ \ Input Output
1 r



Relation Graph

L. : >()._ &
Relation interactions: & O-Eon
N e
head2head, head2tail, tail2head, tail2tail “?O gel Cz
N
Cbbéb (:><‘e§i’Q
Example: l
collab
(author, t2h, genre) a8
Anything that has an author is likely to have a genre / \é
t2h
genre

authored



Ultra: Unified, Learnable, Transferable

knowledge graph G )
message
. O passing
oY
q q
° / o
initialize relation representations
1] N
relation graph G.. O message O

O O

\_ J

/ \ ‘ O passing ‘ O
19—,




0-shot Inference on any Knowledge Graph

EE ULTRA Pre-training

Supervised SOTA

B ULTRA 0-shot

B ULTRA fine-tuned

0.9

> lVordNeL < Other >

NELL-derived

Wikidata-derived

> <

Freebase-derived

<

0.8

training graphs

||||||||||||||| \

Ultra: 13 / 14
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Surprising Generalization Ability

Domains

Sizes

Encyclopedia

( e, o
10-40k entities

\_

10-200 relations
100k-300k triplets

~

_J

ﬂ

Biology

Encyclopedia
Commonsense Geosraphy

\_

( e, o
2k-100k entities

7-2000 relations
5k-1M triplets

J

Ultra: 14 /14



GNN-QE!12IBl: Solving multi-hop queries with
inductive models and logical operations

[1] Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, Jian Tang. Neural-Symbolic Models for Logical Queries on
Knowledge Graphs. ICML 2022.
[2] Mikhail Galkin, Zhaocheng Zhu, Hongyu Ren, Jian Tang. Inductive Logical Query Answering in Knowledge

Graphs. NeurlPS 2022.
[3] Mikhail Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, Zhaocheng Zhu. Zero-shot Logical Query Reasoning

on any Knowledge Graph. arXiv 2024.



Knowledge Graph Completion

Input: a head entity, a relation
Output: one or many tail entities

‘ , grandson, ? )

GNN-QE: 1/ 26



Multi-hop Logical Queries

Input: one or several entities, several relations, logical operations

Output: one or many tail entities

UVA UofT

Stanford _ o _
At what universities do the Turing Award

winners in the field of deep learning work?

Knuth Turing Award O%

Deep Learning Field!

Welling Hinton

Deep Learning —
University
Analysis of

Algorithms
NYU

UdeM
GNN-QE: 2/ 26



Multi-hop Logical Queries

UVA UofT

Stanford _ o )
At what universities do the Turing Award

winners in the field of deep learning work?

Knuth Turing Award O%

Deep Learning Field?!

Analysis of
Algorithms
NYU “—

search this subgraph

Welling Hinton

—
University

Deep Learning

UdeM

GNN-QE: 3/ 26



Subgraph Matching

Win-t
Turing Award

Deep Learning —
Field?!

*

%o

‘A
ﬁ
Y University

)0

UVA UofT

Stanford

Welling

Knuth

Deep Learning

Analysis of

Algorithms
NYU

UdeM

GNN-QE: 4 /26



Subgraph Matching

UVA

Stanford

Win-t
Turing Award O—»O,.
4 . ) Knuth
Y University
Deep Learning 7 * Deep Learning ( )
Field

Analysis of
Algorithms
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Subgraph Matching

Win-t
Turing Award

Deep Learning —
Field?!

*

%o

‘A
ﬁ
Y University

)0

UVA UofT

Stanford

Welling

Knuth

Deep Learning

Analysis of

Algorithms
NYU

UdeM
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Subgraph Matching

Win-t
Turing Award

Y University
Deep Learning 4
Field?!

Deep Learning

Stanford

Knuth

Analysis of

Algorithms
NYU
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Subgraph Matching

Win-t
Turing Award

Deep Learning —
Field?!

———
University

UVA UofT

Stanford

Welling

Knuth

Deep Learning

Analysis of

Algorithms
NYU

UdeM
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Subgraph Matching

UVA

Stanford

Win-t Welli
Turing Award eling
Knuth
University
Deep Learning — Deep Learning
Field?!

Analysis of

Algorithms
NYU

UdeM
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Subgraph Matching

No answer!

UVA UofT

Stanford

Win-t Welli
Turing Award . eling
4 Knuth
Y University
Deep Learning — * Deep Learning
Field?!

Analysis of

Algorithms
NYU

UdeM
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Subgraph matching is inductive, but it can’t
reason about missing links.

GNN-QE: 11/ 26



Subgraph Matching
X = {Hinton, Lecun, Bengio} € 2V
Relation Projection: Y = University(X)

Conjunction: X N Y
Disjunction: X Ul Win
Negation: V\ X Turing Award. @=——+@-.,

Y University
)“

Deep Learning r—



Relax to Fuzzy Sets
x = {Hinton: 0.81, Lecun: 0.56, Bengio: 0.64} € [0,1]"
Relation Projection: y = University(x)

Conjunction: x O y
Disjunction: x +y—x QO y Wi
Negation: 1 — x turing Award @ O-..

Y University
“‘

Deep Learning r—l

GNN-QE: 13/ 26



Relax to Fuzzy Sets
x = {Hinton: 0.81, Lecun: 0.56, Bengio: 0.64} € [0,1]"
Relation Projection: y = University(x)

Conjunction: x O y
Disjunction: x + y—x ®O y ¢ Inductive!

Win?
. Turing A d
Negation: 1 — x uring Award @——@..,

Y University
i“

Deep Learning r—l



Refresher: NBFNet

Deep Learning

a single-source input

GNN-QE: 15/ 26



Refresher: NBFNet

Deep Learning

a single-source input

GNN-QE: 16 / 26



Relation Projection

Hinton Welling
—
\ University
LeCun

Bengio /Cj/v

a fuzzy set input

GNN-QE: 17 / 26



Relation Projection

Hinton Welling
—
\ University
LeCun

Bengio /cj/v

a fuzzy set input

GNN-QE: 18 / 26



0-shot Relation Projection

knowledge graph

relation graph

construct

2 O
— O
infer relation
representations

GNN-QE: 19/ 26




0-shot Relation Projection

knowledge graph

relation graph

mfer relation e
/ representations j O

initialized with Ultra checkpoints

GNN-QE: 20/ 26



Graph Neural Network Query Executor
x = {Hinton: 0.81, Lecun: 0.56, Bengio: 0.64} € [0,1]"
Relation Projection: y = University(x) Inductive!

Conjunction: x O y
Disjunction: x + y—x Oy ¢ Inductive!

Win1
Turing Award

0..
*

Negation: 1 — x

Y University
i“

Deep Learning r—



Multi-hop Logical Queries (V;4in = Viest)

metric: MRRT

Model avg, avg, 1p 2p 3p 2i 3i pi ip 2u up 2in 3in  inp pin pni
FB15k
GQE 28.0 - 546 153 108 397 514 27.6 19.1 221 11.6 - - - - -
Q2B 38.0 - 68.0 21.0 142 551 665 394 26.1 351 16.7 - - - - -
BetaE 416 11.8 65.1 257 247 558 665 439 28.1 40.1 252 143 147 115 65 124
CQD-CO 46.9 - 89.2 253 134 744 783 441 332 418 219 - - - - -
CQD-Beam 58.2 - 89.2 543 28.6 744 783 582 677 424 309 - - - - -
ConE 498 148 733 338 292 o644 737 509 357 557 314 179 187 125 98 151
GNN-QE 728 38.6 885 693 58.7 797 835 699 704 741 61.0 447 41.7 420 30.1 343
FB15k-237
GQE 16.3 - 350 72 53 233 346 165 107 82 57 - - - - -
Q2B 20.1 - 406 94 68 295 423 21.2 126 113 7.6 - - - - -
BetaE 209 55 390 109 100 288 425 224 126 124 97 5.1 79 74 35 34
CQD-CO 21.8 : 46.7 95 63 312 40.6 236 160 145 82 - - - - -
CQD-Beam 22.3 - 46.7 11.6 80 312 406 21.2 187 146 84 - - - - -
FuzzQE 240 7.8 428 129 103 333 469 269 178 146 103 85 11.6 78 52 58
ConE 234 59 418 128 110 326 473 255 140 145 108 54 86 78 40 3.6

GNN-QE 268 102 428 147 11.8 383 541 311 189 162 134 100 168 93 72 7.8
GNN-QE: 22 / 26




Multi-hop Logical Queries (V. ,in # Viost)

metric: H@10T

Class Model avg, avg, 1p 2p 3p 2i 3i pi ip 2u up 2in 3in  inp pin  pni
FB15k-237
Edge-type Heuristic 0.1 41 177 82 99 107 130 98 82 53 85 26 29 84 38 27
Inference-only  NodePiece-QE 11.2 - 255 8.2 84 124 139 99 8.7 70 6.8 - - - - -
NodePiece-QE w/ GNN  28.6 - 459 192 115 399 488 294 226 253 146 - - - - -
Trainable GNN-QE 50.7 33.6 654 363 31.6 738 843 565 415 393 28.0 333 464 292 249 340

Metric = Hits@10 | query = EPFO avg

0.5 c.‘ /.~..,0-....__ °
@]

0.4

@

200 300 400
Ratio Eintl/Etrain, %o

Metric = Hits@10 | query = neg avg

0\. . . Model
03 \. \./ \. - NodePiece-QE
\ —— NodePiece-QE w/ GNN
0 -~ —— GNN-QE
<1t 1 1 /..... Edge-type Heuristic
0.1
'.....-..___. .......... I e [ ]
100 200 300 400 500

Ratio Eind Etrain, %
GNN-QE: 23/ 26



Better Compositional Generalization

R better single-hop to

FB15k I FB15k-237 multi-hop generalization NELL995
A better |28 13 "’
70 : Ny 35
/ multi-hop | 26 N -
/ A 20
60 ® ] 24 / Q - ®
> S 22 > S S ®
S’ 50 > /o > T e
© ¢ T 20 /®le ® 20
40 /@ ®
® 18 15
30 16 10
50 60 70 80 90 36 38 40 42 44 46 35 40 45 50 55 60
1 1p™ = 7 7. 1
P P better single-hop P
® GQE ® Q2B ® BetaE ® CQD-CO ® CQD-Beam ® FuzzQE ConE o GNN—QEJ

GNN-QE: 24 / 26



Effective for Small Training Data

30

| = GNN-QE avg, |
= = = GNN-QE avg,
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== GQE avgp

1% 10% 100%
training samples
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0-shot Inference of Multi-hop Queries
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TorchDrug!!l: Simplifying development on
structured data and related applications

[1] Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu Yuan, Yangtian Zhang, Junkun
Chen, Huiyu Cai, Jiarui Lu, Chang Ma, Runcheng Liu, Louis-Pascal Xhonneux, Meng Qu, Jian Tang. TorchDrug: A
Powerful and Flexible Machine Learning Platform for Drug Discovery. arXiv 2022.



ML Implementation = Tensor Operations

15t

(She sells sea sheIIs.) 1
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Structured Data Meets Tensors
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Structured Data Meets Tensors
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Naive Solution: Padding
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Naive Solution: Padding

0] 012 3 4
0 How to perform operations
1
4 2 5 on batched tensors?
3
4 _I 1 1 1
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0 0123 - |
0 |
1
2
3
3 1 ]
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Solutions

arrays

Nz: NumPy @ @, NetworkX

Network Analysis in Python

easy to implement
preprocessing
very slow

dense tensors

O PyTorch

on-the-fly
not scalable
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Solutions

arrays

N2 NumPy | NetworkX

Network Analysis in Python

easy to implement
preprocessing
very slow

dense tensors

O PyTorch

on-the-fly
not scalable

sparse tensors

O PyTorch

on-the-fly
scalable

How to implement?

TorchDrug: 7/ 17



The High-Level Idea
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The High-Level Idea

[ 0 | 01234
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a graph of two connected components
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The High-Level Idea

01234 5¢6 1738
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easy to implement!
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Data Structure

torchdrug.data.PackedGraph

0]
4 )
dee list O(112]12]|33|5|5|6([6]|7]8
4 1 €dg 410 1 8
3 #nodes 514
> #edges 6|6
node/edge/graph
attributes
. ) N\ AN /

predefined or user-registered



Graph Operations

new_graphs = graphs.subgraph(node index)

0 5
4 1
3 8 6
graphs
é )
q list 011]2 313|5[5]6]6
caee st 110 4 AEE

#nodes 5|4

Hedges |66
g ,

nodeindex |[0]|2|3]4]|5]|6]8

4

3 1
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Supported Operations

Class API Graph Operation
data.Graph.clone Clone this graph
data.Graph.detach Detach this graph
data.Graph.cpu Move this graph to CPU

] data.Graph.cuda Move this graph to GPU
PyTorch-like
’ data.Graph.copy_ Copy data from another graph

data.Graph.full Return a fully connected graph over nodes
data.Graph.repeat Repeat this graph like torch.repeat
data.PackedGraph.repeat_interleave Repeat this graph like torch.repeat_interleave
data.Graph.node_mask Mask out some nodes from this graph

Node-level
data.Graph.compact Remove isolated nodes
data.Graph.edge_mask Mask out some edges from this graph
data.Graph.directed Return a directed version of this graph

Edge-level ) ) o
data.Graph.undirected Return an undirected version of this graph
data.Graph.match Search specific edges in this graph
data.Graph.connected_components Split a graph into connected components
data.Graph.split Split a graph into a batch of graphs
data.Graph.pack Pack multiple graphs into a batch

Graph-level data.Graph.line_graph Return a line graph of this graph
data.PackedGraph.graph_mask Mask out some graphs from this batch
data.PackedGraph.merge Merge some graphs into a smaller batch
data.PackedGraph.unpack Unpack a batch into multiple graphs

Molecule

data.

Molecule.ion_to_molecules

Convert ions to molecules

Protein

data.

Protein.residue_mask

Mask out some residues from this protein

TorchDrug: 13 / 17



Different Levels of Abstraction

torchdrug.core.Engine
[ train() ] [evaluate()] [ load() ] [ save() ] [com‘ig_dict()] [load_config_dict()J

==

4 torchdrug.tasks R

[ Property Prediction J [ Pretrained Molecular Representation ] [ De Novo Molecule Design & Optimization ]

[ Reaction Prediction & Retrosynthesis ] [ Biomedical Knowledge Graph Reasoning ] ------
) == —+ )
C N
torchdrug.layers torchdrug.models

[ Common ] [ Convolution ][ Readout ] [ChebNet] [ GCN ] [ GAT ][ MPNN ] [ NFP J

[ Pooling ] [ Functional ] [ Flow ] [GraphAF] [InfoGraph] [ TranskE ] [ RotatE ] ------

—

torchdrug.data

o
Ve
Graph Molecule
[ node_mask() ] [ from_smiles()
| edgemask() || |[ visualize()
Q

Gor'chdr‘ug.tr'ansfor'mh 4 torchdrug.datasets )

, Molecule Datasets
Graph Transformations fl> \

Retrosynthesis Datasets

~ >

Molecule Transformations

\\://

J
J
l \ Knowledge Graphs ]/
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Use Case: Adaptive Message Passing!!!

~ 1 2
3
1 2
3
0 1 4
4 0
5 _>& <
repeat
012345 ) 4
apply masks 5 2
predicted
node masks avoid materializing 3
a batch of large graphs
~ 4

[1] Zhaocheng Zhu*, Xinyu Yuan®*, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau, Jian Tang.
A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs. NeurlPS 2023.
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Use Case: Beam Search of Generation!]

N
@ \ v on;,-°  enable parallel generation
@ '

[1] Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, Jian Tang. A Graph to Graphs Framework for

Retrosynthesis Prediction. ICML 2020. TorchDrug: 16 / 17



Use Case: On-the-fly Graph Construction!!]

g J

graph from protein structure

~

random augmentations

a2

contrastive

\_

\ ¥ \
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= 42
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vas

~ learning

) speed up development

[1] Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang.
Protein Representation Learning by Geometric Structure Pretraining. ICLR 2023.



—_— — Conclusions —>

is the impact of our works?

is the future for reasoning and generalization?



Direct impact: Accelerating the transition
from transductive models to inductive ones

Conclusions: 1 /10



Lesson: Models with inductive biases inspired
by symbolic algorithms generalize better

Conclusions: 2 /10



Belief: Many reasoning problems can be
unified

Conclusions: 3 /10



Inductive Generalization on Text

Train

-

G

~
What is theanswerto1+1+1-1-1? —>» [01 — /

),
Test '

=g
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The De Facto Approach: Instruction Tuning

Finetune on many tasks (“instruction-tuning”)

Input (Commonsense Reasonin Input (Translation)

Here is a goal: Get a cool sleep on Translate this sentence to Inference on unseen task type
SEli LA Spanish: _ . Input (Natural Language Inference)
How would you accomplish this goal? The new office building Premise: At my age you will probably
OPTIONS: was built in less than three have learnt one 1esson.

-Keep stack of pillow cases in fridge. months. Hypothesis: It's not certain how many
-Keep stack of pillow cases in oven. Target lessons you'll learn by your thirties.
Target El nuevo edificio de oficinas Does the premise entail the hypothesis?
keep stack of pillow cases in fridge se construyo en tres meses. OPTIONS:

-yes | [ -it is not possible to tell | [ -no

Sentiment analysis tasks
FLAN Response

It is not possible to tell

Coreference resolution tasks

implicitly perform inductive generalization

[1] Jason Wei, et al. Finetuned Language Models Are Zero-Shot Learners. ICLR 2022.
Conclusions: 5 /10



Dealing with Parametric Knowledge

—lam|__

knowledge —

explicit knowledge reasoning

— o]

query —

parametric knowledge query —{ knowledge
reasoning




Dealing with Parametric Knowledge

— o]

query { knowledge | —.
reasoning
How can we inject new knowledge?
O
new query —{ knowledge
reasoning

Conclusions: 7 /10



Expand the Scope of Generalization
KG,

KG /

unify knowledge graphs
all knowledge graphs

Conclusions: 8 / 10



Expand the Scope of Generalization

unify reasoning tasks

all reasoning tasks

Conclusions: 9 /10



From Simulators to the Real World

save cost for data collection

Conclusions: 10/ 10



Thank you! =
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